Image augmentation is a data augmentation method that generates more training data from the existing training samples. Image Augmentation is especially useful in domains where training data is limited or expensive to obtain, like in biomedical applications.
Discriminative approaches to classification often learn shortcuts that hold in-distribution but fail even under minor distribution shift. This failure mode stems from an overreliance on features that are spuriously correlated with the label. We show that generative classifiers, which use class-conditional generative models, can avoid this issue by modeling all features, both core and spurious, instead of mainly spurious ones. These generative classifiers are simple to train, avoiding the need for specialized augmentations, strong regularization, extra hyperparameters, or knowledge of the specific spurious correlations to avoid. We find that diffusion-based and autoregressive generative classifiers achieve state-of-the-art performance on five standard image and text distribution shift benchmarks and reduce the impact of spurious correlations in realistic applications, such as medical or satellite datasets. Finally, we carefully analyze a Gaussian toy setting to understand the inductive biases of generative classifiers, as well as the data properties that determine when generative classifiers outperform discriminative ones.
Rare gastrointestinal lesions are infrequently encountered in routine endoscopy, restricting the data available for developing reliable artificial intelligence (AI) models and training novice clinicians. Here we present EndoRare, a one-shot, retraining-free generative framework that synthesizes diverse, high-fidelity lesion exemplars from a single reference image. By leveraging language-guided concept disentanglement, EndoRare separates pathognomonic lesion features from non-diagnostic attributes, encoding the former into a learnable prototype embedding while varying the latter to ensure diversity. We validated the framework across four rare pathologies (calcifying fibrous tumor, juvenile polyposis syndrome, familial adenomatous polyposis, and Peutz-Jeghers syndrome). Synthetic images were judged clinically plausible by experts and, when used for data augmentation, significantly enhanced downstream AI classifiers, improving the true positive rate at low false-positive rates. Crucially, a blinded reader study demonstrated that novice endoscopists exposed to EndoRare-generated cases achieved a 0.400 increase in recall and a 0.267 increase in precision. These results establish a practical, data-efficient pathway to bridge the rare-disease gap in both computer-aided diagnostics and clinical education.
Self-supervised semantic segmentation methods often fail when faced with appearance ambiguities. We argue that this is due to an over-reliance on unstable, appearance-based features such as shadows, glare, and local textures. We propose \textbf{GASeg}, a novel framework that bridges appearance and geometry by leveraging stable topological information. The core of our method is Differentiable Box-Counting (\textbf{DBC}) module, which quantifies multi-scale topological statistics from two parallel streams: geometric-based features and appearance-based features. To force the model to learn these stable structural representations, we introduce Topological Augmentation (\textbf{TopoAug}), an adversarial strategy that simulates real-world ambiguities by applying morphological operators to the input images. A multi-objective loss, \textbf{GALoss}, then explicitly enforces cross-modal alignment between geometric-based and appearance-based features. Extensive experiments demonstrate that GASeg achieves state-of-the-art performance on four benchmarks, including COCO-Stuff, Cityscapes, and PASCAL, validating our approach of bridging geometry and appearance via topological information.
Traditional image stitching techniques have predominantly utilized two-dimensional homography transformations and mesh warping to achieve alignment on a planar surface. While effective for scenes that are approximately coplanar or exhibit minimal parallax, these approaches often result in ghosting, structural bending, and stretching distortions in non-overlapping regions when applied to real three-dimensional scenes characterized by multiple depth layers and occlusions. Such challenges are exacerbated in multi-view accumulations and 360° closed-loop stitching scenarios. In response, this study introduces a spatially lifted panoramic stitching framework that initially elevates each input image into a dense three-dimensional point representation within a unified coordinate system, facilitating global cross-view fusion augmented by confidence metrics. Subsequently, a unified projection center is established in three-dimensional space, and an equidistant cylindrical projection is employed to map the fused data onto a single panoramic manifold, thereby producing a geometrically consistent 360° panoramic layout. Finally, hole filling is conducted within the canvas domain to address unknown regions revealed by viewpoint transitions, restoring continuous texture and semantic coherence. This framework reconceptualizes stitching from a two-dimensional warping paradigm to a three-dimensional consistency paradigm and is designed to flexibly incorporate various three-dimensional lifting and completion modules. Experimental evaluations demonstrate that the proposed method substantially mitigates geometric distortions and ghosting artifacts in scenarios involving significant parallax and complex occlusions, yielding panoramic results that are more natural and consistent.
Recent advances in dermatological image analysis have been driven by large-scale annotated datasets; however, most existing benchmarks focus on dermatoscopic images and lack patient-authored queries and clinical context, limiting their applicability to patient-centered care. To address this gap, we introduce DermaVQA-DAS, an extension of the DermaVQA dataset that supports two complementary tasks: closed-ended question answering (QA) and dermatological lesion segmentation. Central to this work is the Dermatology Assessment Schema (DAS), a novel expert-developed framework that systematically captures clinically meaningful dermatological features in a structured and standardized form. DAS comprises 36 high-level and 27 fine-grained assessment questions, with multiple-choice options in English and Chinese. Leveraging DAS, we provide expert-annotated datasets for both closed QA and segmentation and benchmark state-of-the-art multimodal models. For segmentation, we evaluate multiple prompting strategies and show that prompt design impacts performance: the default prompt achieves the best results under Mean-of-Max and Mean-of-Mean evaluation aggregation schemes, while an augmented prompt incorporating both patient query title and content yields the highest performance under majority-vote-based microscore evaluation, achieving a Jaccard index of 0.395 and a Dice score of 0.566 with BiomedParse. For closed-ended QA, overall performance is strong across models, with average accuracies ranging from 0.729 to 0.798; o3 achieves the best overall accuracy (0.798), closely followed by GPT-4.1 (0.796), while Gemini-1.5-Pro shows competitive performance within the Gemini family (0.783). We publicly release DermaVQA-DAS, the DAS schema, and evaluation protocols to support and accelerate future research in patient-centered dermatological vision-language modeling (https://osf.io/72rp3).
Improving the accuracy of fire detection using infrared night vision cameras remains a challenging task. Previous studies have reported strong performance with popular detection models. For example, YOLOv7 achieved an mAP50-95 of 0.51 using an input image size of 640 x 1280, RT-DETR reached an mAP50-95 of 0.65 with an image size of 640 x 640, and YOLOv9 obtained an mAP50-95 of 0.598 at the same resolution. Despite these results, limitations in dataset construction continue to cause issues, particularly the frequent misclassification of bright artificial lights as fire. This report presents three main contributions: an additional NIR dataset, a two-stage detection model, and Patched-YOLO. First, to address data scarcity, we explore and apply various data augmentation strategies for both the NIR dataset and the classification dataset. Second, to improve night-time fire detection accuracy while reducing false positives caused by artificial lights, we propose a two-stage pipeline combining YOLOv11 and EfficientNetV2-B0. The proposed approach achieves higher detection accuracy compared to previous methods, particularly for night-time fire detection. Third, to improve fire detection in RGB images, especially for small and distant objects, we introduce Patched-YOLO, which enhances the model's detection capability through patch-based processing. Further details of these contributions are discussed in the following sections.
The rapid evolution of generative models has led to a continuous emergence of multimodal safety risks, exposing the limitations of existing defense methods. To address these challenges, we propose ProGuard, a vision-language proactive guard that identifies and describes out-of-distribution (OOD) safety risks without the need for model adjustments required by traditional reactive approaches. We first construct a modality-balanced dataset of 87K samples, each annotated with both binary safety labels and risk categories under a hierarchical multimodal safety taxonomy, effectively mitigating modality bias and ensuring consistent moderation across text, image, and text-image inputs. Based on this dataset, we train our vision-language base model purely through reinforcement learning (RL) to achieve efficient and concise reasoning. To approximate proactive safety scenarios in a controlled setting, we further introduce an OOD safety category inference task and augment the RL objective with a synonym-bank-based similarity reward that encourages the model to generate concise descriptions for unseen unsafe categories. Experimental results show that ProGuard achieves performance comparable to closed-source large models on binary safety classification, substantially outperforms existing open-source guard models on unsafe content categorization. Most notably, ProGuard delivers a strong proactive moderation ability, improving OOD risk detection by 52.6% and OOD risk description by 64.8%.
The rapid advancement of generative artificial intelligence has enabled the creation of highly realistic fake facial images, posing serious threats to personal privacy and the integrity of online information. Existing deepfake detection methods often rely on handcrafted forensic cues and complex architectures, achieving strong performance in intra-domain settings but suffering significant degradation when confronted with unseen forgery patterns. In this paper, we propose GenDF, a simple yet effective framework that transfers a powerful large-scale vision model to the deepfake detection task with a compact and neat network design. GenDF incorporates deepfake-specific representation learning to capture discriminative patterns between real and fake facial images, feature space redistribution to mitigate distribution mismatch, and a classification-invariant feature augmentation strategy to enhance generalization without introducing additional trainable parameters. Extensive experiments demonstrate that GenDF achieves state-of-the-art generalization performance in cross-domain and cross-manipulation settings while requiring only 0.28M trainable parameters, validating the effectiveness and efficiency of the proposed framework.
Intelligent image editing increasingly relies on advances in computer vision, multimodal reasoning, and generative modeling. While vision-language models (VLMs) and diffusion models enable guided visual manipulation, existing work rarely ensures that inserted objects are \emph{contextually appropriate}. We introduce two new tasks for advertising and digital media: (1) \emph{context-aware object insertion}, which requires predicting suitable object categories, generating them, and placing them plausibly within the scene; and (2) \emph{sponsor-product logo augmentation}, which involves detecting products and inserting correct brand logos, even when items are unbranded or incorrectly branded. To support these tasks, we build two new datasets with category annotations, placement regions, and sponsor-product labels.
Ground Penetrating Radar (GPR) has emerged as a pivotal tool for non-destructive evaluation of subsurface road defects. However, conventional GPR image interpretation remains heavily reliant on subjective expertise, introducing inefficiencies and inaccuracies. This study introduces a comprehensive framework to address these limitations: (1) A DCGAN-based data augmentation strategy synthesizes high-fidelity GPR images to mitigate data scarcity while preserving defect morphology under complex backgrounds; (2) A novel Multi-modal Chain and Global Attention Network (MCGA-Net) is proposed, integrating Multi-modal Chain Feature Fusion (MCFF) for hierarchical multi-scale defect representation and Global Attention Mechanism (GAM) for context-aware feature enhancement; (3) MS COCO transfer learning fine-tunes the backbone network, accelerating convergence and improving generalization. Ablation and comparison experiments validate the framework's efficacy. MCGA-Net achieves Precision (92.8%), Recall (92.5%), and mAP@50 (95.9%). In the detection of Gaussian noise, weak signals and small targets, MCGA-Net maintains robustness and outperforms other models. This work establishes a new paradigm for automated GPR-based defect detection, balancing computational efficiency with high accuracy in complex subsurface environments.