Image Augmentation


Image augmentation is a data augmentation method that generates more training data from the existing training samples. Image Augmentation is especially useful in domains where training data is limited or expensive to obtain, like in biomedical applications.

FedGIN: Federated Learning with Dynamic Global Intensity Non-linear Augmentation for Organ Segmentation using Multi-modal Images

Add code
Aug 07, 2025
Viaarxiv icon

Automated ultrasound doppler angle estimation using deep learning

Add code
Aug 06, 2025
Viaarxiv icon

Accelerating Conditional Prompt Learning via Masked Image Modeling for Vision-Language Models

Add code
Aug 07, 2025
Viaarxiv icon

F2PASeg: Feature Fusion for Pituitary Anatomy Segmentation in Endoscopic Surgery

Add code
Aug 07, 2025
Viaarxiv icon

RAIDX: A Retrieval-Augmented Generation and GRPO Reinforcement Learning Framework for Explainable Deepfake Detection

Add code
Aug 06, 2025
Viaarxiv icon

JanusNet: Hierarchical Slice-Block Shuffle and Displacement for Semi-Supervised 3D Multi-Organ Segmentation

Add code
Aug 06, 2025
Viaarxiv icon

QA-Dragon: Query-Aware Dynamic RAG System for Knowledge-Intensive Visual Question Answering

Add code
Aug 07, 2025
Viaarxiv icon

RPCANet++: Deep Interpretable Robust PCA for Sparse Object Segmentation

Add code
Aug 06, 2025
Viaarxiv icon

TRKT: Weakly Supervised Dynamic Scene Graph Generation with Temporal-enhanced Relation-aware Knowledge Transferring

Add code
Aug 07, 2025
Viaarxiv icon

RAVID: Retrieval-Augmented Visual Detection: A Knowledge-Driven Approach for AI-Generated Image Identification

Add code
Aug 05, 2025
Viaarxiv icon